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Abstract In this work, for the first time in an article, we present in a comprehensive
way the explicit advanced step-point (EAS) methods. The EAS methods is a family of
methods designed for the numerical solution of non-stiff and mildly stiff initial value
problems (IVPs) and comprises three distinct schemes: EAS1, EAS2 and EAS3. A
thorough theoretical analysis of the EAS family of predictor–corrector methods is
presented in terms of their accuracy and stability characteristics and requirements, as
well as the rationale for creating the three distinct schemes mentioned above. In this
paper we also examine in detail one of the three schemes, the EAS1 methods. EAS1
are assessed for the very first time, are meticulously studied and their superior regions
of absolute stability are presented. Furthermore the computational efficiency of EAS1
is examined and comparative numerical results are presented with the use of a var-
iable step, variable order EAS1 code. The numerical results provide good evidence
that EAS1 could be seen as superior to the well established Adams methods for the
numerical solution of mildly stiff initial value problems.
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1 Introduction

The term “Explicit Advanced Step-point” (EAS) methods appeared in [1], where most
of the first stage of the work on EAS methods was carried out. Before the completion
of [1], two introductory works had appeared [2,3], which were not only preliminary,
but most importantly short and in their early stages. There is no noteworthy overlap-
ping between the present work and these two earlier papers. In 2004 paper [4] was
published, which deals with some general formulae for the stability functions of EAS
methods. Prior to the appearance of [5], surprisingly enough, despite the fact that
much work has been done on the EAS methods, effectively only their general form
was known. In other words, before [5] and the present work, the methods themselves,
essentially, had never had their capabilities assessed in journal articles. This is the
second in a series of papers that aims to remedy this fundamental gap in the existing
literature on the EAS schemes. It is worth mentioning that although there were reasons
beyond our control that had postponed the timely publication of the present research,
which should had appeared before [5], naturally, we assume full responsibility for any
hold-up.1

The second stage of the work on EAS methods began with their trigonometric and
exponential fitting, which took the EAS methods to a different level and empowered
them to better tackle certain types of problems. The trigonometric and exponential
fitting of EAS methods for k = 1 can be found in [6] and further research publica-
tions should be expected in the future. Following the same methodology as in [6], we
applied, for the first time in the literature, trigonometric fitting to the Adams predic-
tor–corrector methods (also known as Adams–Bashforth–Moulton methods) [7–13],
which forms part of the second stage of the work mentioned above. As we will see
in the next sections, the original Adams methods (not the trigonometrically fitted ver-
sions) are crucial to the present research. This work deals solely with the explicit
advanced step-point (EAS) methods; readers who may be interested in the implicit
advanced step-point (IAS) methods are referred to [14–19].

The purpose of the present work is to comprehensively study and assess, for the
first time, the EAS methods and in particular the EAS1 scheme. We will examine in
detail the general approach to the EAS methods, their general accuracy characteristics,
the theoretical basis on which we build their accuracy and stability requirements, their
stability graphs (EAS1), their local error estimates and their implementation. It should
be stated that the EAS1 scheme could be successfully used for the solution of certain
chemical reaction problems.

This rest of this work is organised as follows: In sect. 2 we give the EAS general
form; in sect. 3 we discuss in detail the accuracy of the EAS schemes; in sect. 4 we
establish our theoretical accuracy and stability requirements; in sect. 5 we discuss the
rationale behind the development of three distinct EAS schemes; in sect. 6 we examine
the EAS1 scheme and we present twelve absolute stability region graphs; in sect. 7
we consider the implementation of the EAS1 into a variable order/variable step code;

1 Please note that in [5], due to a typo, this present work is wrongly cited as having been accepted in the
journal “Mathematical and Computer Modeling” instead of the correct “Journal of Mathematical Chemis-
try”.
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in sect. 8 we present our numerical results and comparisons and in sect. 9 we draw
some conclusions for this work.

2 Adams predictor–corrector methods and the EAS general form

In 1975 Shampine and Gordon [20] presented one of the most successful implementa-
tions of the Adams class of methods, which was based on the very well known Adams–
Bashforth and Adams–Moulton formulae, used as a Predictor–Corrector
(P–C) pair. Shampine and Gordon used the following formula in the implementation
of their P–C scheme:

ȳn+1 = yn + h
k∑

i=1
γi−1∇ i−1 fn

yn+1 = ȳn+1 + hγk∇k f̄n+1

⎫
⎬

⎭
(1)

where f̄n+1 = f (xn+1, ȳn+1).

The main idea for developing the numerical EAS schemes for non-stiff IVPs is as
follows:

1. Use an explicit k-step predictor to compute y(p)
n+k , where the superscript (p) stands

for “predictor” .
2. Evaluate f (p)

n+k = f (xn+k, y(p)
n+k) and use y(p)

n+k together with f (p)
n+k , in the next

stage, for the formulation of the explicit second (k+1)-step predictor.
3. Use an explicit (k + 1)-step predictor to compute y(p)

n+k+1.

4. Evaluate f (p)
n+k+1 ≡ f (xn+k+1, y(p)

n+k+1 and using

(
yn+ j , y′

n+ j

)
, 0 ≤ j ≤ k − 1

(
y(p)

n+i , f (p)
n+i

)
, i = k, k + 1

compute the corresponding explicit corrected solution y(c)
n+k , where the superscript

(c) stands for “corrector” .

According to the above steps our approach takes the following very general form:

y(p)
n+k +

k−1∑

j=0
a j yn+ j = h

k−1∑

j=0
b j fn+ j

y(p)
n+k+1 + āk y(p)

n+k +
k−1∑

j=0
ā j yn+ j = h

k−1∑

j=0
b̄ j fn+ j + hb̄k f (p)

n+k

y(c)
n+k +

k−1∑

j=0
â j yn+ j = h

k−1∑

j=0
b̂ j fn+ j + h

[
b̂k f (p)

n+k + b̂k+1 f (p)
n+k+1

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

where the superscripts (p) and (c) stand for “predictor” and “corrector”, respectively.
In order to compute the corrected solution y(c)

n+k , besides using information at the
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current point xn+k , we also use information at the advanced step-point xn+k+1, as well
as at previous points.

The form (2) is the most general form that our methods may take. The obvious
problem now is the proper choice of coefficients. This will be discussed in detail in
sects. 4, 5 and 6. For the time being it suffices to say that one of the most effective
approaches is to use Adams coefficients and to choose for (2):

ak−1 = āk = âk−1 ≡ −1, a j = ā0 = ā j+1 = â j = 0, 0 ≤ j ≤ k − 2. (3)

An additional advantage we have by adopting this approach (in terms of changing order
and storing information) is that we are able to express our formulae in backward dif-
ference form. Very briefly, we need to identify an interpolation polynomial pk+2(x) of
degree (k + 1) which passes through the points (xn+2, fn+2), (xn+1, fn+1), . . . .,

(xn−k+1, fn−k+1) and this is done in an equivalent way as with the Adams–
Moulton formula (for more details the reader is referred to [4]). Finally using (3) and
our newly identified interpolation polynomial [4], we can express the EAS methods
in backward difference form as follows:

y(p)
n+k = yn+k−1 + h

k−1∑

i=0
γi∇ i fn+k−1

y(p)
n+k+1 = y(p)

n+k + h
k∑

i=0
γi∇ i f (p)

n+k − γkha∇k f (p)
n+k

y(c)
n+k = yn+k−1 + h

k−1∑

i=0
γi∇ i fn+k−1 + γkh∇k f (p)

n+k + hā∇k+1 f (p)
n+k+1

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4)

where a and ā are free coefficients.
We may describe the steps followed by (4) as follows:

Step 1: Compute a predicted solution y(p)
n+k of order k using a standard k-step Adams

predictor

y(p)
n+k = yn+k−1 + h

k−1∑

i=0

γi∇ i fn+k−1.

Step 2: Evaluate f (p)
n+k = f (xn+k, y(p)

n+k).

Step 3: Compute a second predicted solution y(p)
n+k+1 of order k at xn+k+1 using an

explicit linear multistep formula of the form

y(p)
n+k+1 = y(p)

n+k + h
k∑

i=0

γi∇ i f (p)
n+k − γkha∇k f (p)

n+k .

Step 4: Evaluate f (p)
n+k+1 = f

(
xn+k+1, y(p)

n+k+1

)
.
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Step 5: Compute a corrected solution of order (k + 1) at xn+k as

y(c)
n+k = yn+k−1 + h

k−1∑

i=0

γi∇ i fn+k−1 + γkh∇k f (p)
n+k + hā∇k+1 f (p)

n+k+1.

Step 6: Evaluate f (c)
n+k = f

(
xn+k, y(c)

n+k

)
and assuming that y(c)

n+k satisfies the local

error requirement (discussed in sects. 3.1 and 7) we set yn+k = y(c)
n+k, fn+k =

f
(

xn+k, y(c)
n+k

)
.

3 Accuracy of EAS methods

The general form (4) contains three difference equations and each one of them has
a different local truncation error (LTE). Our main interest is in the corrector but the
LTEs of the two predictors are indispensable for the calculation of the LTE of the
corrector. We can show using Taylor series that:

• The first predictor y(p)
n+k from (4) has the following LTE

LTEP1 ≡ y(xn+k) − y(p)
n+k = γkhk+1 y(k+1)(xn) + 0(hk+2) (5)

where P1 stands for predictor-1 and y(p)
n+k is of order k.

• The second predictor y(p)
n+k+1 from (4) has a LTE of the form

LTEP2 ≡ y(xn+k+1) − y(p)
n+k+1 = γk(1 + a)hk+1 y(k+1)(xn) + 0(hk+2) (6)

where P2 stands for predictor-2 and y(p)
n+k+1 is also of order k.

When a predictor–corrector scheme is applied in a PECE (prediction-evaluation-cor-
rection-evaluation) mode, as it is basically the case with EAS also, the LTE of the
corrector may be “polluted” by that of the predictors. The level of this “pollution” can
be shown by the LTE of the corrector. Now instead of attempting to work with Taylor
expansions, we will work directly with the general case, using the definition of the
LTE, and thus establishing the LTE of the corrector ∀ k = 1, 2, . . . . This results in
a new proof for the LTE of the EAS methods.

Theorem 1 The EAS schemes corrector y(c)
n+k from (4) has a (k + 1) order LTE given

by

LTE ≡ [ā(1 + a) + γk − (k + 1)ā]γkhk+2 ϑ f

ϑy
y(k+1)(xn)

− (
ā − γ ∗

k+1

)
hk+2 y(k+2)(xn) + 0(hk+3) (7)

where γ ∗
k+1 = γk+1 − γk , is the respective Adams–Moulton coefficient.
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Proof We know that the LTE is given by

LTE ≡ y(xn+k) − y(c)
n+k .

Our corrector is of order (k + 1) and as we see from (4), we need f (p)
n+k and f (p)

n+k+1.
These quantities are given by:

f (p)
n+k − f (xn+k, y(xn+k)) ≈ −ϑ f

ϑy
LTEP1(h

k+1), (8)

where LTEP1(hk+1) represents the LTE of y(p)
n+k from (5), and

f (p)
n+k+1 − f (xn+k+1, y(xn+k+1)) ≈ −ϑ f

ϑy
LTEP2(h

k+1), (9)

where LTEP2(hk+1) represents the LTE of y(p)
n+k+1 from (6).

Using (4) for y(c)
n+k , we finally get:

y(c)
n+k = yn+k−1 + h

k−1∑

i=0

γi∇ i fn+k−1 + γkh∇k f (p)
n+k + hā∇k+1 f (p)

n+k+1 = · · ·

= yn+k−1 + h
k−1∑

i=0

γi∇ i fn+k−1 + γkh∇k fn+k + hā∇k+1 fn+k+1

+ γkh
(
∇k f (p)

n+k − ∇k fn+k

)
+ hā

(
∇k+1 f (p)

n+k+1 − ∇k+1 fn+k+1

)
. (10)

Accordingly y(xn+k) becomes:

y(xn+k) = y(xn+k−1) + h
k−1∑

i=0

γi∇ i f (xn+k−1)

+ γkh∇k f (xn+k) + hā∇k+1 f (xn+k+1) + 0(hk+3). (11)

Making the usual localizing assumption and subtracting (10) from (11) we get:

LTE ≡ y(xn+k) − y(c)
n+k

= γkh
(
∇k f (xn+k) − ∇k f (p)

n+k

)
+ hā

(
∇k+1 f (xn+k+1) − ∇k+1 f (p)

n+k+1

)

− (
ā − γ ∗

k+1

)
hk+2 y(k+2)(xn)
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= γkh
(

f (xn+k) − f (p)
n+k

)

+ hā
((

f (xn+k+1) − f (p)
n+k+1

)
− (k + 1)

(
f (xn+k) − f (p)

n+k

))

− (
ā − γ ∗

k+1

)
hk+2 y(k+2)(xn).

If we put (9) and (10) into the previous equation we have:

LTE = γkh
∂ f

∂y
γkhk+1 y(k+1)(xn) + hā

∂ f

∂y
γk(1 + a)hk+1 y(k+1)(xn)

− hā(k + 1)
∂ f

∂y
γkhk+1 y(k+1)(xn) − (ā − γ ∗

k+1)h
k+2 y(k+2)(xn).

Thus, we finally obtain:

LTE ≡ y(xn+k) − y(c)
n+k

= [ā(1 + a) + γk − (k + 1)ā]γkhk+2 ϑ f

ϑy
y(k+1)(xn)

− (
ā − γ ∗

k+1

)
hk+2 y(k+2)(xn) + 0(kk+3)

for every k = 1, 2, . . . . (Note that in practice k may take values between 1 and 12) �	
We notice that with the above predictor–corrector approach we have two free param-

eters at our disposal, namely a and ā. We can also see that the Shampine and Gordon
code [20] corresponds to a = ā = 0.

Let us now consider the LTE for k = 1(γ0 = 1, γ1 = 1
2 ) from (7):

y(xn+1) − y(c)
n+1 =

[

ā(1 + a) + 1

2
− 2ā

]

· 1

2
h3 fy y′′

n −
[

1

2
+ ā

]

h3 y′′′
n

=
[

1

4
+ ā

2
(1 + a) − ā

]

h3 fy y′′
n −

[
1

12
+ ā

]

h3 y′′′
n .

As we just stated, the Adams case results from ā = a = 0 and has A1 = 1
4 and A2 =

− 1
12 where with A1 and A2 we symbolize the Adams coefficients of fy y′′

n and y′′′
n ,

respectively. Assuming that our system is autonomous, i.e. y′ = f (y), we may
substitute:

y′′ = f ′ = fy f

y′′′ = f ′′ = fyy f 2 + f 2
y f

into the previous calculation and we get:
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y(xn+1) − y(c)
n+1 =

[
1

4
+ ā

2
(1 + a) − ā

]

h3 f 2
y · f −

[
1

12
+ ā

]

h3
(

fyy f 2 + f 2
y f

)

=
[

1

6
+ ā

2
(a − 3)

]

h3 f 2
y f −

[
1

12
+ ā

]

h3 fyy f 2.

Now the Adams coefficients are:

A1 = 1

6
and A2 = − 1

12

where A1 and A2 are the coefficients of f 2
y f and fyy f 2, respectively.

If we define the coefficients B1 and B2 from (7), as:

B1 = [
ā(1 + a) + γk − (k + 1)ā

]
γk

B2 = − (
ā − γ ∗

k+1

)
(12)

and if we extend the previous analysis ∀ k, we are able to rewrite the LTE (7) in
terms of elementary differentials as:

LTE = (B1 + B2)hk+2(elementary differ.)1

+B2hk+2(elementary differ.)2

= E1hk+2(elementary differ.)1

+E2hk+2(elementary differ.)2

⎫
⎪⎪⎬

⎪⎪⎭
(13)

where (elementary differ.)i , i = 1 or 2, are subsets of all elementary differentials
of order (k + 2). The form we will use for the LTE of our scheme (4) will be, from
now on, the one given in (13). The advantage of (13) compared to (7) is that it groups
together like quantities and we would expect this to produce more reliable results for
linear problems when estimating the LTE.

3.1 Local error estimation

Ideally we would like to obtain a cheap estimate of the local error expansion (13)
and to base a step-size control procedure on this estimate. Unfortunately (13) is too
complicated to estimate in a reliable and economical way. In view of this we adopted
the well known Fehlberg embedding [21] approach where we estimate and control
the error in a solution which is asymptotically less accurate than the one we actually
accept. To do this we compute an approximation y̆n+k at xn+k , without additional
function evaluations, using an embedded formula of the form:

y̆n+k = yn+k−1+h
k−1∑

i=0

γi∇ i fn+k−1 + h(ã2 + (k + 1)ã1)∇k f (p)
n+k

+ hã1∇k+1 f (p)
n+k+1 (14)
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where ã1 and ã2 are free parameters. For (14) we require that

y(xn+k) − y̆n+k = 0(hk+1) (15)

and assuming h is small we can neglect 0(hk+2) compared with 0(hk+1). Thus our
embedded formula (14) is of order k compared to (13) which is of order (k + 1).

The LTE of our embedded formula is given by:

LTEe ≡ y(xn+k) − y̆n+k = hk+1(γk − ã2 − (k + 1)ã1)y(k+1)(xn) + 0(hk+2)

where the subscript e stands for “embedded”.
Now we estimate the local error of EAS methods by subtracting (7) from (15):

Local Error ≈ y(c)
n+k − y̆n+k = h(γk − ã2 − (k + 1)ã1)∇k f (p)

n+k

+ h(ā − ã1)∇k+1 f (p)
n+k+1.

}

(16)

If the norm of (16) is less than a prescribed tolerance we perform local extrapolation
and accept y(c)

n+k as the final solution at xn+k . Because of the particularly simple form
of (16) we are able, besides controlling the step-size, to change order (discussed in
sect. 7) in a straightforward way.

4 Stability and accuracy requirements

For our corrector formula, the coefficients to be chosen are a and ā, and for our embed-
ded formula, which is used for local error estimation, the coefficients to be chosen
are ã1, ã2. The choice of these coefficients will directly influence the stability and
accuracy of our methods. Our investigations have shown that the simultaneous require-
ments of accuracy and high stability are often contradictory requirements. Stability
depends on the choice of the free parameters a, ā, ã1, ã2 but, as we see from (12) to
(13) and (16), these same parameters form the coefficients of the LTE, which means
that accuracy is also influenced at the same time. If we do not pay attention to the
magnitude of the LTE and we choose the free parameters so as to maximise stability,
the result is that we may lose in accuracy. If, on the other hand, we try to restrict the size
of the LTE and local error coefficients in order to gain in accuracy, then we may lose
in stability. This observation led us to develop three different classes of EAS methods
that will be discussed in sect. 5. It also means that any numerical search designed to
obtain good accuracy and stability properties needs to be carried out very carefully.

In order to define our stability and accuracy requirements we need to find a the-
oretical basis on which to make our choices and thus restrict accordingly our error
coefficients by assigning appropriate values to our free parameters.
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Accuracy

Since EAS methods require 3 functions per step whereas the Adams predictor–cor-
rector formulae in PECE mode require 2, we decided to “scale” the computational
effort involved with our formulae. To explain how this is done let us consider the case
k = 1. The LTE in terms of elementary differentials, as given in sect. 3, is for the EAS
corrector formula:

y(xn+1) − y(c)
n+1 =

[
1

6
+ ā

2
(a − 3)

]

h3 f 2
y f −

[
1

12
+ ā

]

h3 fyy f 2 + 0(h4)

and for the well known 1-step Adams formula in PECE mode

1

6
h3 f 2

y f − 1

12
h3 fyy f 2 + 0(h4).

If we now integrate from, let us say, xn to xn + 2h using the EAS method with a
stepsize h the LTE will be for sufficiently small h:

LTE = 2

[
1

6
+ ā

2
(a − 3)

]

h3 f 2
y f − 2

[
1

12
+ ā

]

h3 fyy f 2 + 0(h4).

Similarly if we integrate from xn to xn + 2h using the Adams method with stepsize
2h/3, so that both methods do the same amount of work (i.e. use six function evalua-
tions), the LTE is:

3 · 1

6

(
2h

3

)3

f 2
y f − 3

1

12

(
2h

3

)3

fyy f 2.

For the EAS methods to be asymptotically more accurate than the Adams methods we
need (where the norms used can be any convenient norms)

∥
∥
∥
∥
∥

[
1

6
+ ā

2
(a − 3)

]

f 2
y f −

[
1

12
+ ā

]

fyy f 2

∥
∥
∥
∥
∥
<

(
2

3

)2
∥
∥
∥
∥
∥

1

6
f 2
y f − 1

12
fyy f 2

∥
∥
∥
∥
∥

,

assuming that the 0(h4) terms are negligible. This can be achieved by requiring

1/6+ ā
2 (a−3)

1
12 +ā

= 1/6
1/12 = 2

and
∣
∣ 1

12 + ā
∣
∣ <

( 2
3

)2 1
12

⎫
⎬

⎭
(17)

Generalising (17) for each step-number k, and keeping in mind that all EAS formulae
have only 2 terms in their LTE, we have the following two EAS accuracy require-
ments:

(1) (EAS LTE coeff.) <

(
2

3

)k+1

(Adams LTE coeff.) (18)

123



876 J Math Chem (2009) 46:866–895

(2) Using the symbolism of (13) for the LTE, we want:

E1

E2
≈ Ẽ1

Ẽ2
(19)

where Ẽ1 and Ẽ2 are the corresponding error coefficients of the
conventional Adams P–C formulae.

We now have to consider what happens though to the free parameters ã1 and ã2 of
the embedded formula. We note that by making appropriate choices for ã1 and ã2 we
can make the leading term in the LTE of the embedded formula vanish. If ã1 and ã2
are chosen so that this error term has a large modulus, we can expect to have a good
local error estimate, but a relatively inefficient integration. On the other hand, as this
error term tends to zero, a more accurate solution is expected and a faster integra-
tion, but in general the error estimate gets worse and worse, and thus the integration
becomes increasingly unreliable. This is a design difficulty frequently encountered
with embedded error estimates. Shampine [22] investigated this problem for explicit
R–K formulae and he suggested choosing formula coefficients so that the local error
estimate mimics what happens when Richardson extrapolation is used to estimate the
error. It would be useful to have a corresponding theory for multistep methods so
we know how to choose the local error estimate. What we have chosen to do for our
embedded formula is to apply condition (18) in this case also. This has a logical basis
since we compare all our error coefficients with the corresponding ones of the Adams
P–C approach. Hence, we obtain the following accuracy requirement for the EAS
embedded formula:

(3) (EAS Local Error coeff.) <

(
2

3

)k+1

× (Adams Local Error coeff.) (20)

Stability

An obvious stability requirement for our corrector formula would be to have a “large”
region of absolute stability. Of course, according to how we define the meaning of
“large” we will obtain different formulas. For example, “large” could mean a “large”
intercept on the real axis or a “large” intercept on the imaginary axis. On the other
hand, the accuracy requirements above affect stability. Thus, we decided that since the
Adams formulae require 2 functions per step while EAS formulae require 3 functions
per step, we require that the stability interval of our method should be “at least 3

2 times
that of the conventional method”. We may write our principal stability requirement
for the EAS corrector as:

(4) For each specific step-number k = 1, 2, . . . , 12 we should have :
(Adams real stability interval) ≤ 3

2
(EAS real stability interval) (21)
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In practise the above requirement gives also a reasonably large intercept on the imag-
inary axis. Requirement (21) ensures that both approaches have roughly the same
stability per function evaluation. Since (21) can not always be satisfied, we also focus
on another important aspect of absolute stability, i.e. the area. Using the whole area
of absolute stability as our criterion, we can formulate two complementary stability
requirements for the EAS corrector, which can be summarised as follows:

(5)

For each specific step-number k = 1, 2, …, 12 the EAS entire absolute
stability region area should be at least 1.5 times larger, compared to
the corresponding Adams total absolute stability region area.

⎫
⎬

⎭
(22a)

(6)

For each specific step-number k = 1, 2, …, 12 we should maximise
the EAS entire absolute stability region area, subject to the
corresponding accuracy, LTE or local error coefficient, requirements.

⎫
⎬

⎭
(22b)

We note that requirement (22b) does not apply to EAS1, since the EAS1 scheme does
not strictly follow (by design) the accuracy requirements (18), (19) and (20). Although
requirement (21) is crucial and it is our principal stability requirement, we believe that
the above two complementary area requirements (22a) and (22b) are also important
and depending on the problem at hand, they could become vital.

As far as the embedded formula is concerned, it is not necessary for this formula
to have good stability properties since its sole purpose is to provide an estimate of the
local error. Because no extra computational work is needed, we require an embedded
formula with “good” stability. By “good” stability we mean at least as large as the
corrector’s region of absolute stability (but not identical to it).

5 Three different EAS schemes

It now remains to examine the choice of the free parameters a, ā, ã1, ã2 and to dis-
cuss the step-size and order control. The requirements of high stability and accuracy
led us to develop three different families of EAS methods, with each one aiming at
a different target, since our investigations have shown that the requirements of accu-
racy and high stability are often conflicting requirements. Thus, in order to bypass or
relax these conflicting requirements, the following classes of EAS methods have been
investigated:

1. EAS1 is developed in order to get the best possible real absolute stability and area
but the accuracy requirements (18), (19) and (20) are not strictly followed and thus
its accuracy should be poorer compared with Adams formulae of the same order.
However, as we will see in the next sections, there is a type of problems, namely
mildly stiff problems, where EAS1 should perform better than Adams, due to its
much superior regions of absolute stability.

2. EAS2 is developed in order to have better stability than the Shampine and Gordon
P–C scheme and at the same time at least as good accuracy. This class follows
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Table 1 EAS schemes and our theoretical accuracy and stability requirements

Accuracy and stability requirements EAS1 EAS2 EAS3

Accuracy-LTE-1 (18) In part � �
Accuracy-LTE-2 (19) In part � �
Accuracy-embedded (20) In part � �
Stability-real axis (21) � Limited �
Stability-area-1 (22a) � � �
Stability-area-2 (22b) Does not apply � �

the accuracy requirements (18), (19) and (20) but problems arise with the stabil-
ity (21). EAS2 is the class that we designed to be directly competitive with the
Shampine scheme for general non-stiff problems. The EAS2 scheme has been
thoroughly investigated in a separate paper [5].

3. EAS3 is the class that maintains good accuracy and the best possible stability (bet-
ter than EAS2). As we will see in a forthcoming article, this method constitutes
an even larger departure from the Adams type of methods, compared to EAS1 and
EAS2. EAS3 is the class that fulfils all accuracy and stability requirements (i.e.
(18) through (22)).

All the above methods are designed to have a superior absolute stability region, ranging
from dramatically better to slightly better, compared with Adams methods. If instead
of using the real axis of absolute stability, i.e. (21), we do our comparisons using the
whole area of the stability region for each order then the outcome of the stability region
comparisons is drastically in favour of EAS methods, since even in the “worst” case,
the EAS regions are at least double in area compared with Adams methods. If we put
all six accuracy and stability requirements in a chart we get Table 1:

6 EAS1 methods

In EAS1 the P–C system (4) is used with the aim of deriving formulae with the largest
possible real absolute stability region. The accuracy conditions (18), (19) and (20)
are not always met but the stability requirements (21) and (22a) will always be satis-
fied. We should note that besides deriving formulae with a large real absolute stability
region we could also derive formulae with a large imaginary stability interval as well
(these would be particularly well suited for solving semi-discretized IVPs arising
from hyperbolic partial differential equations). In Table 2 we list the free parameters
of the EAS1 formulae, together with the corresponding LTE coefficients, for orders
1–12 that satisfy the restrictions previously described. The choice of the parameters
a, ā, ã1 and ã2 is by no means straightforward since they have been selected from a
large number of possibilities.
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Table 2 EAS1 free parameters and error coefficients

Step-number A ā ã1 ã2 E1 from (13) E2 from (13) Local error coef. (16)

k = 1 6.330 −0.03800 −0.0260 0.4280 0.10340 −0.045330 0.12400

k = 2 9.300 −0.02500 −0.0175 0.3910 0.08090 −0.016670 0.07817

k = 3 13.950 −0.01400 −0.0101 0.3470 0.07075 −0.012390 0.06840

k = 4 15.050 −0.01650 −0.0125 0.3590 0.05572 −0.002250 0.05211

k = 5 14.570 −0.02520 −0.0196 0.4090 0.04019 0.010931 0.03846

k = 6 22.800 −0.01320 −0.0098 0.3545 0.03145 0.001833 0.02969

k = 7 28.900 −0.01040 −0.0082 0.3470 0.02431 0.001043 0.02282

k = 8 37.000 −0.00880 −0.0080 0.3560 0.01260 0.000907 0.01087

k = 9 43.000 −0.00730 −0.0064 0.3440 0.01164 0.000514 0.00698

k = 10 48.000 −0.00640 −0.0056 0.3360 0.01084 0.000476 0.00579

k = 11 55.500 −0.00550 −0.0052 0.3350 0.00836 0.000263 0.00167

k = 12 62.500 −0.00480 −0.00475 0.3300 0.00729 0.000122 0.00078

6.1 EAS1 stability regions

Before presenting the stability region graphs, it is worth saying something about the
method that these graphs were obtained. The way these graphs were obtained was by
no means trivial and the difficulty of this task is something usually underestimated or
completely overlooked. Let us consider the case for k = 1. Making the appropriate
algebraic manipulations [4] and using the test equation y′ = λy we have:

y(p)
n+1 = yn + h fn

where fn = λyn

y(p)
n+2 = yn + h

[(
3

2
− 1

2
a

)

f (p)
n+1 +

(
1

2
a + 1

2

)

fn

]

where f (p)
n+1 = (λ + hλ2)yn

y(c)
n+1 = yn + h

[

ā f (p)
n+2 +

(
1

2
− 2ā

)

f (p)
n+1 +

(
1

2
+ ā

)

fn

]

yn

where f (p)
n+2 =

[
λ + hλ

( 3
2 − 1

2 a
)

f (p)
n+1 + ( 1

2 a + 1
2

)
hλ2

]
yn and we finally get

y(c)
n+1 =

[

1 + hλ + 1

2
(hλ)2 + ā

(
3

2
− 1

2
a

)

(hλ)3
]

yn . (23)

If we let hλ = x + iy and we separate the real from the imaginary part, then (23)
becomes:
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y(c)
n+1 =

[(

1 + x + 1

2
(x2 − y2) + ā

(
3

2
− 1

2
a

)

(x3 − 3xy2)

)

+ i

(

y + xy + ā

(
3

2
− 1

2
a

)

(3x2 y − y3)

)]

yn .

Thus, the general k-step corrector using the customary test equation etc can be written
in the following form:

y(c)
n+k =

k−1∑

j=0

([A j + i B j ]yn+ j ) (24)

where A j represents the real part and B j the imaginary part of the coefficients of yn+ j .
Since we can write the corrector for each k in the form (24), this means that we can

separate the real from the imaginary part in each case. Then we scan for x and y and
accept the point (x, y) if and only if the polynomial at hand meets the Schur criteria
or in other words is a Schur polynomial. Consider the nth degree polynomial

�(t) = qntn + qn−1tn−1 + · · · + q1t + q0

where qn 
= 0, q0 
= 0. The polynomial �(t) is said to be a Schur polynomial if its
roots ts satisfy |ts | < 1.

Schur’s Theorem A polynomial � (t) is a Schur polynomial if and only if:

(1) |�̂(0)| > |�(0)| and
(2) �1(t) is a Schur polynomial.

Where

�̂(t) = q∗
0 tn + q∗

1 tn−1 + · · · + q∗
n−1t + q∗

n

�1(t) = 1

t
{�̂(0)�(t) − �(0)�̂(t)}

q∗
i is the complex conjugate of qi and �1(t) is a polynomial of degree ≤ t − 1.

If the conditions given by Schur’s theorem are applied n − 1 times they yield n − 1
inequalities and the requirement that a polynomial of degree 1 should be a Schur poly-
nomial. In order to implement these conditions we had to create a special subroutine
that applies the Schur criteria for polynomials up to order 12. This technique, which we
will call the scanning technique, we believe it has a considerable advantage compared
to the boundary locus technique (see [22, p.71–72]) in the case that the region of abso-
lute stability has two or more non-connected parts, such as the Runge–Kutta DOPRI
(5,4) method. The disadvantage of this technique is that it becomes very complicated
as the degree of the polynomial rises. All the EAS1 scheme graphs in this paper are
obtained through this technique.
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For the very first time in an article, the graphs of the stability regions for the EAS1
corrector, the embedded and the corresponding well known Adams corrector are given
in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 (three similar but not identical figures to Figs. 1,
2 and 3 appeared in [3]). We observe from these figures that EAS1 formulae have a
real stability interval which is about 3–4 times that of Shampine’s P–C scheme. This
is a safe indication that EAS1 methods would be much more efficient than Adams
method in cases where the step-size of integration is restricted by the real stability
region, i.e. in the case of mildly stiff problems with real eigenvalues. Each different
line shown in the figures below represents one of the formulae.

7 Implementation of the EAS1 scheme

This section deals with the way in which EAS1 formulae are implemented in a variable
step/variable order mode. It should be noted that although we investigate the imple-
mentation of EAS1 scheme, the implementation logic and the computer code are the
same for the EAS2 implementation as well (including some necessary modifications)
[5]. The description will be brief since Shampine and Gordon’s code has been a great
influence on our implementation. For example, algorithms for interpolating solutions
at off-step points or decreasing and increasing order are exactly as described in [20].
Even an attempt to briefly describe the features of Shampine and Gordon’s code would
be totally beyond the scope of this work and for a description of the implementation
of Adams formulae the reader is referred to [20]. Needless to say, if any modifications

Fig. 1 EAS1 corrector-embedded and Adams corrector stability regions for k = 1
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Fig. 2 EAS1 corrector-embedded and Adams corrector stability regions for k = 2

Fig. 3 EAS1 corrector-embedded and Adams corrector stability regions for k = 3

Fig. 4 EAS1 corrector-embedded and Adams corrector stability regions for k = 4
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Fig. 5 EAS1
corrector-embedded and Adams
corrector stability regions for
k = 5

Fig. 6 EAS1
corrector-embedded and Adams
corrector stability regions for
k = 6

Fig. 7 EAS1
corrector-embedded and Adams
corrector stability regions for
k = 7

have been applied to the heavily reprogrammed Shampine and Gordon code after we
obtained our numerical results (sect. 8) some time ago, this is not the concern of this
paper. As well as many similarities in the implementation of the Adams and EAS
approaches there are also several differences, which will be briefly described below.

Shampine’s code uses divided differences for the storing of information. Instead
of doing this we chose to use backward differences to store the history array, which
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Fig. 8 EAS1
corrector-embedded and Adams
corrector stability regions for
k = 8

Fig. 9 EAS1
corrector-embedded and Adams
corrector stability regions for
k = 9

Fig. 10 EAS1
corrector-embedded and Adams
corrector stability regions for
k = 10

represents a rather big departure from the conventional approach. The stored array,
when using a k-step formula with a current stepsize h, has the form:

(
yn, hy′

n, h∇ y′
n, h∇2 y′

n, . . . , h∇k+1 y′
n

)T

We will use a quasi-constant stepsize implementation and backward differences are
very efficient for such situations. In order to make clear how the history array is
updated let us say that for the information stored at xn−1 and xn , if for example we
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Fig. 11 EAS1
corrector-embedded and Adams
corrector stability regions for
k = 11

Fig. 12 EAS1 corrector-embedded and Adams corrector stability regions for k = 12

want h∇ y′
n = h(y′

n − y′
n−1), we just subtract the already computed results, and in

general:

∇k y′
n = ∇k−1 y′

n − ∇k−1 y′
n−1.

The local error estimate (16) can be computed using stored information. The quantity
h∇k f (p)

n+k is stored in the history array, while h∇k+1 f (p)
n+k+1 may also be computed

from already existing information in the history array:

h∇k+1 f (p)
n+k+1 ≡ h f (p)

n+k+1 − h
k∑

i=0

∇ i f (p)
n+k .

The local error check is done after the corrected solution has been computed.
As far as the starting of the integration is concerned, the ideas of Shampine and

Gordon are broadly followed. While being in this initial phase we try to change order
and stepsize at every integration step. The difference with Shampine’s code lies in the
fact that we compute also a stepsize for the next higher order. To explain our starting
procedure we suppose that our current order is RD with a step h̃ . We compute,
via our local error estimates, the steps h̄ and h that can be used for the next step at
orders RD+1 and RD , respectively. The procedure for choosing order and stepsize is
as follows:

123



886 J Math Chem (2009) 46:866–895

IF h̄ > h or h̄ > 5h̃ THEN
IF h̄ < 2h̃ THEN

h = h̃
get out of starting phase

ELSE
IF RD 
= Maximum order THEN

RD = RD + 1
h = 2h̃

ELSE
h = 2h̃

ENDIF
ELSE IF h > 2h̃ THEN

h = 2h̃
RD = RD − 1

ELSE
h = h̃
get out of starting phase

ENDIF
ENDIF

The integration is continued with step h and order RD. We allow step doubling when
a step is increased, whereas decreasing the step is permitted by a factor between 0.5
and 1.

EAS formulae are not defined for non-constant stepsize and thus we do not know
how the stability of the formulae behaves for truly variable steps. We work there-
fore with a quasi-uniform step and we use interpolation to change h. This standard
approach is often called the fixed coefficient implementation. Providing that the norm
of (16) is less than a prescribed tolerance:

∥
∥
∥(γk − ã2 − (k + 1) ã1) h∇k f (p)

n+k + (ā − ã1) h∇k+1 f (p)
n+k+1

∥
∥
∥ < ε

where ε is the prescribed tolerance, using a k-step formula, we allow changes in step-
size to be made after k +2 steps and the decisions for changing (or not changing) order
and/or stepsize are as described in [20]. If the prescribed tolerance is not satisfied we
replace the derivatives by those at the previous step and we scale h by an appropriate
factor. If more than 7 successive failures occur we decrease h by a factor of 10 and
we start at order 1. When changing from a current stepsize h to a new one αh, we
interpolate the existing data so as to get values appropriate for working with the new
fixed step αh. As far as change of order is concerned, we compute

Ck−1∇k−1 y′
n+k, Ck∇k y′

n+k and Ck+1∇k+1 y′
n+k

where Ck−1 is the LTE of the predictor of order k − 1, and we accept the smallest
norm of the three. In the process of implementing the EAS1 scheme the code used in
[24] was employed as a starting point and among other things, we had to change the
interpolation subroutine and the main integration subroutine of that code.
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8 Numerical results and comparisons

We would expect EAS1 formulae with their excellent stability to perform better than
Adams formulae on mildly stiff problems. In order to investigate to what extent these
expectations are true we give the results of appropriate numerical comparisons below.

We should stress that the EAS1 code is in an embryonic stage. This means that it
could improve in performance if reprogrammed and in the light of further experience.
Until we performed our numerical comparisons a while ago, the Shampine code had
been reprogrammed many times and this had led to a much more efficient version than
the one first appeared in 1975. A problem that we encountered with the EAS code is
that the numerical results do not improve as the order rises above k = 8. We attempted
to rectify this but had been unable to identify the programming inefficiency. Although
the EAS1 scheme have been developed up to and including k = 12, as the Adams
formulae have, we had to restrict the order of both codes to k = 8 in order to be able
to obtain fair comparisons. Thus, in what follows the highest permitted order is 8 for
both the EAS1 formulae as well as for the Adams formulae.

8.1 The DETEST programme

Enright and Pryce in order to facilitate comparison processes between different codes,
developed the DETEST computer programme [25], which provides a set of test prob-
lems as well as the facility to compare different methods using the “normalized effi-
ciency results” option.

Different codes are based on different discretization methods and thus they commit
different errors. Codes for IVPs control an estimate of the local error and not, in gen-
eral, an estimate of the global error, the magnitude of which we do not know. Generally
it is hoped that the global error will be in the range of the error tolerance specified by
the user. That is if we keep local truncation error suitably banded then the global error
will also be banded. In practice though, it is normally the case that the global error is
larger than the specified local error tolerance. When two different codes are applied
to the same problem with the same local tolerance they may, at the same time, have a
quite different global error. This difference in the global error makes the comparison
of different codes a rather difficult issue and that is why it is not sufficient to make
a comparison by counting only the number of function evaluations, the number of
steps taken to complete the integration and the time required for the integration. The
DETEST program provides us with a reliable estimate of the maximum global error
over the whole range of integration. This facility allows DETEST to compute:

Maximum Global Error = max ‖ y (xn) − yn ‖, n = 1, 2, . . .

where yn is the numerical solution generated by the user’s code and y(xn) is the true
solution at the point xn . DETEST is able to compute an accurate approximation to both
the maximum global error and the global error at the endpoint by implementing a very
accurate IVP integration method that runs at a stricter tolerance than the one prescribed
by the user. DETEST has also the ability to display information about the amount of
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work needed to achieve a specified accuracy, i.e. to keep the maximum global error less
or equal to a given bound. Consequently the comparisons between different codes are
much fairer because the numerical results correspond to solutions with the same maxi-
mum global error. DETEST refers to such results as normalized efficiency results. The
problems for EAS1 and Adams were run at local tolerances of 10−2, 10−3, . . . , 10−9.
DETEST produces two types of result tables after the successful termination of the
integration. These tables are given in the numerical comparisons.

The non-normalized results tables, i.e. the odd numbered tables, are not essential
for our numerical comparisons and we provide them for the sake of completeness.
These tables provide the following information: The local tolerance “LOG10 TOL”
required, the time in seconds which was needed to solve the problem at a given tol-
erance, the overhead “OVHD” in seconds (this is equal to the time taken for solving
a problem minus the time taken for the function evaluations), the number of function
calls “FCN CALLS”, the number of integration steps taken “NO OF STEPS”, the end
point global error, the maximum global error and the maximum local error.

The normalized efficiency results tables are the only results we need for our com-
parisons. These tables include information of the time required for the solver to achieve
a maximum global error less than or equal to the “EXPECTED ACCURACY”, the
respective overhead, the number of function evaluations and the number of integration
steps taken. The logarithm of the estimate of the local tolerance that the solver should
be supplied with in order to keep the maximum global error less than or equal to the
“EXPECTED ACCURACY”, is given by the column “EQUIV LOG10 TOL”. If the
DETEST’s intrinsic solver fails to complete successfully the integration for a given
tolerance then the amount of output displayed for the normalized efficiency tables may
vary.

8.2 Mildly stiff problems: EAS1 versus Adams

In this section we obtain numerical results for EAS1 and Adams IVP solvers on two
mildly stiff problems. The problems and the numerical results are given below in
Tables 3 through 10.

Problem 1 This is an artificial test problem of the form

dy

dx
= −λy + (λ − 1)e−x , y(0) = 1

that has the solution

y(x) = e−x .

The problem becomes increasingly stiff as λ increases. We ran the two codes on this
problem with (a) λ = 10, (b) λ = 100. The absolute accuracy requirement is for 10−2

to 10−9 and the range of integration is [0, 20]. Please note that for λ = 1 Problem 1
is non-stiff.
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Table 3 Non-normalized results for the mildly stiff problem 1, λ = 10

LOG10
TOL

Time OVHD FCN CALLS NO OF
STEPS

END PNT
GLB ERR

MAXIMUM
GLB ERR

MAXIMUM
LOC ERR

EAS1

−2.00 .010 .002 166 50 .71 1.31 1.282

−3.00 .013 .005 169 52 1.18 1.20 1.203

−4.00 .018 .008 206 67 5.16 5.16 5.207

−5.00 .020 .008 241 81 1.65 1.65 1.598

−6.00 .023 .010 266 92 2.20 2.20 2.104

−7.00 .033 .016 355 122 4.71 4.71 4.716

−8.00 .038 .017 405 137 4.35 61.60 64.528

−9.00 .040 .019 426 151 .11 .57 .532

ADAMS

−2.00 .035 .022 271 127 2.59 3.73 3.687

−3.00 .033 .021 247 115 2.73 5.86 6.741

−4.00 .038 .024 275 128 .17 6.68 7.508

−5.00 .038 .024 284 136 .43 3.59 4.004

−6.00 .047 .030 349 168 .12 6.35 7.303

−7.00 .044 .029 319 152 .50 4.30 5.044

−8.00 .053 .034 382 186 2.02 5.32 6.907

−9.00 .063 .041 456 222 .25 4.65 5.390

Table 4 Normalized efficiency results for problem 1, λ = 10

EXPECTED
ACCURACY

EQUIV
LOG10
TOL

TIME OVHD FCN CALLS NO OF
STEPS

EAS1

10** −2 −2.23 .011 .002 166 50

10** −3 −3.30 .015 .006 180 56

10** −4 −4.38 .019 .008 219 72

10** −5 −5.46 .022 .009 252 86

10** −6 −6.54 .029 .013 313 108

10** −7 −7.61 .036 .017 385 131

10** −8 −8.69 .040 .019 419 146

ADAMS

10** −2 −2.69 .034 .021 254 118

10** −3 −3.69 .037 .023 266 123

10** −4 −4.69 .038 .024 281 133

10** −5 −5.69 .044 .028 329 158

10** −6 −6.70 .045 .029 328 156

10** −7 −7.70 .051 .033 362 175

10** −8 −8.70 .060 .039 433 211
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Problem 1 for λ = 10 can be regarded as mildly stiff. Looking at the normalized
efficiency results (Table 4) we see that the EAS1 code is clearly faster and also more
accurate than the Shampine & Gordon code.

For the value λ = 100, Problem 1, can be regarded as being stiff. Observing the
normalized efficiency results (Table 6) we see that the EAS1 code is much faster and
more accurate than the Shampine and Gordon code. We may also see that the “TIME”
ratio between EAS1/Adams is much more in favour of EAS1 than it was for λ = 10.

Problem 2 This is a partial differential equation of the form:

∂u

∂x
= ∂2u

∂y2 , 0 ≤ y ≤ 1, x ≥ 0,

u(y, 0) = cos(y), u(0, x) = e−x , u(1, x) = e−x cos(1).

We semidiscretized this problem, using the method of lines [26], in order to obtain a
system of IVPs. We took h = 1/10 and replaced the second derivative term by the
well known central differences, to obtain a system of nine IVPs,

du

dx
= Au + b ,

Table 5 Non-normalized results for the mildly stiff problem 1, λ = 100

LOG10
TOL

TIME OVHD FCN
CALLS

NO OF
STEPS

END PNT
GLB ERR

MAXIMUM
GLB ERR

MAXIMUM
LOC ERR

EAS1

−2.00 .111 .032 1585 465 .38 2.28 2.284

−3.00 .094 .024 1413 418 .71 2.14 2.100

−4.00 .117 .033 1686 481 .46 2.09 2.053

−5.00 .117 .036 1633 480 .61 3.19 3.166

−6.00 .122 .040 1666 507 .24 2.60 2.582

−7.00 .133 .048 1714 530 .30 2.93 2.887

−8.00 .150 .058 1864 593 1.19 3.33 3.329

−9.00 .150 .060 1815 577 .48 2.98 2.990

ADAMS

−2.00 .383 .247 2749 1294 1.14 5.94 6.581

−3.00 .367 .232 2715 1274 5.94 6.34 6.524

−4.00 .350 .220 2612 1212 .62 6.11 6.957

−5.00 .333 .204 2605 1209 1.51 6.66 7.317

−6.00 .367 .232 2710 1265 1.53 8.43 9.402

−7.00 .350 .217 2688 1258 .33 6.70 6.904

−8.00 .383 .242 2847 1357 .04 6.59 6.913

−9.00 .417 .273 2903 1378 1.28 7.61 7.828
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Table 6 Normalized efficiency results for problem 1, λ = 100

EXPECTED
ACCURACY

EQUIV
LOG10 TOL

TIME OVHD FCN
CALLS

NO OF
STEPS

EAS1

10** −2 −2.34 .105 .030 1525 448

10** −3 −3.37 .103 .028 1514 441

10** −4 −4.40 .117 .034 1665 480

10** −5 −5.42 .119 .037 1646 491

10** −6 −6.45 .127 .043 1687 517

10** −7 −7.47 .141 .053 1785 559

10** −8 −8.50 .150 .059 1839 585

ADAMS

10** −2 −2.80 .370 .235 2721 1278

10** −3 −3.81 .353 .223 2631 1223

10** −4 −4.82 .336 .207 2606 1209

10** −5 −5.83 .361 .228 2692 1255

10** −6 −6.85 .353 .219 2691 1259

10** −7 −7.86 .379 .239 2824 1343

10** −8 −8.87 .412 .269 2895 1375

Table 7 Non-normalized results for the mildly stiff problem 2, 0 ≤ x ≤ 5

LOG10
TOL

TIME OVHD FCN
CALLS

NO OF
STEPS

END PNT
GLB ERR

MAXIMUM
GLB ERR

MAXIMUM
LOC ERR

EAS1
−2.00 .350 .284 1307 391 .05 1.00 .993
−3.00 .383 .315 1358 400 .16 .94 .920
−4.00 .467 .384 1649 466 1.50 1.50 1.281
−5.00 .550 .468 1625 486 .70 1.21 1.193
−6.00 .583 .504 1573 497 1.09 1.42 1.415
−7.00 .717 .625 1817 602 7.42 1.41 1.408
−8.00 .783 .687 1922 648 67.42 1.31 1.284

ADAMS
−2.00 1.233 1.099 2673 1257 .82 2.93 2.922
−3.00 1.150 1.020 2589 1211 .16 2.88 2.981
−4.00 1.117 .989 2529 1180 .62 3.29 3.513
−5.00 1.150 1.019 2595 1205 .37 3.75 4.186
−6.00 1.167 1.035 2608 1197 1.06 3.11 3.236
−7.00 1.233 1.096 2727 1296 6.87 3.21 3.262
−8.00 1.317 1.174 2838 1350 67.06 4.01 4.416
−9.00 1.417 1.266 2988 1439 674.73 2.73 2.957

where u = (u1, u2, . . . , u9)
T , b = (1/h2)(e−x , 0, 0, . . . , e−x cos(1.0)), and A is the

usual tridiagonal matrix. This problem was solved using the two codes in the integra-
tion ranges (a) 0 ≤ x ≤ 5 and (b) 0 ≤ x ≤ 20. The results are given in Tables 7, 8, 9
and 10.
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Table 8 Normalized efficiency results for problem 2, 0 ≤ x ≤ 5

EXPECTED
ACCURACY

EQUIV
LOG10 TOL

TIME OVHD FCN CALLS NO OF
STEPS

EAS1

10** −2 −2.03 .351 .285 1308 391

10** −3 −3.05 .388 .319 1372 403

10** −4 −4.07 .473 .390 1647 467

10** −5 −5.09 .553 .471 1620 486

10** −6 −6.11 .598 .517 1599 508

10** −7 −7.13 .725 .633 1830 607

10** −8 −8.14 .795 .698 1934 651

ADAMS

10** −2 −2.49 1.192 1.060 2631 1234

10** −3 −3.50 1.133 1.005 2559 1195

10** −4 −4.50 1.133 1.004 2562 1192

10** −5 −5.51 1.158 1.027 2601 1200

10** −6 −6.51 1.201 1.066 2668 1247

10** −7 −7.52 1.276 1.136 2784 1323

10** −8 −8.52 1.369 1.222 2916 1396

Table 9 Non-normalized results for the mildly stiff problem 2, 0 ≤ x ≤ 20

LOG10
TOL

TIME OVHD FCN
CALLS

NO OF
STEPS

END PNT
GLB ERR

MAXIMUM
GLB ERR

MAXIMUM
LOC ERR

EAS1

−2.00 1.583 1.308 5469 1549 .01 1.00 .993

−3.00 1.367 1.119 4920 1498 .07 .94 .920

−4.00 1.967 1.620 6881 1936 .56 1.09 1.100

−5.00 2.050 1.704 6866 1959 .79 1.21 1.193

−6.00 2.067 1.726 6764 1955 .58 1.42 1.415

−7.00 2.017 1.703 6223 1838 .10 1.41 1.408

−8.00 2.367 2.013 7021 2134 2.08 2.08 1.802

−9.00 2.550 2.204 6879 2149 1.06 1.38 1.382

ADAMS

−2.00 4.750 4.221 10513 4923 1.26 3.92 4.322

−3.00 4.883 4.359 10405 4874 .16 3.40 3.865

−4.00 4.633 4.119 10225 4787 .00 3.92 4.367

−5.00 4.667 4.147 10323 4820 .28 3.75 4.186

−6.00 4.783 4.258 10428 4873 1.48 3.37 3.740

−7.00 4.867 4.335 10551 4956 1.51 3.65 3.910

−8.00 4.833 4.302 10547 4958 .34 6.63 6.548

−9.00 4.967 4.427 10713 5045 .33 3.80 4.265
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Table 10 Normalized efficiency results for problem 2, 0 ≤ x ≤ 20

EXPECTED
ACCURACY

EQUIV
LOG10
TOL

TIME OVHD FCN CALLS NO OF
STEPS

EAS1

10** −2 −1.98 1.588 1.312 5481 1550

10** −3 −3.01 1.376 1.126 4949 1504

10** −4 −4.05 1.971 1.625 6880 1937

10** −5 −5.09 2.052 1.706 6856 1958

10** −6 −6.13 2.060 1.723 6693 1939

10** −7 −7.17 2.076 1.755 6357 1887

10** −8 −8.21 2.405 2.052 6991 2137

ADAMS

10** −2 −2.56 4.824 4.298 10452 4895

10** −3 −3.57 4.741 4.222 10302 4824

10** −4 −4.58 4.653 4.135 10282 4806

10** −5 −5.60 4.737 4.214 10385 4851

10** −6 −6.61 4.835 4.306 10503 4923

10** −7 −7.63 4.846 4.315 10548 4957

10** −8 −8.64 4.919 4.383 10653 5013

For an integration range between 0 ≤ x ≤ 5 we clearly see that the EAS1 code is
much faster and also more accurate than the Shampine/Gordon code (Table 8). This
is in accordance with the results obtained for Problem 1.

For the larger integration range 0 ≤ x ≤ 20 we see that EAS1 performs even better
than before compared to Adams (Table 10). This can be seen from the “TIME” ratio
EAS1/Adams which is more in favour for EAS1 than it was before.

9 Conclusions

In this work we comprehensively examined, for the very fist time in a paper, the EAS
numerical multistep methods designed for the solution of mildly stiff and non-stiff
IVPs. Their accuracy was carefully considered and their LTE was expressed both in
the conventional form, as well as and in their elementary differential mode. The local
error estimation of EAS schemes was also systematically investigated. Expressing the
LTE in an elementary differential form proved central in establishing our basis for
developing six theoretical accuracy and stability requirements. In turn, the construc-
tion of the accuracy and stability requirements led us to develop three distinct EAS
schemes, each one targeting different types of problems and/or fulfilling different sets
of requirements, and all of them competing with the well established Adams P–C
formulae (in the form of the Shampine and Gordon code). Then we studied in some
detail the EAS1 scheme and we presented its superior regions of absolute stability. The
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implementation of the EAS1 formulae in a variable step/variable order code was prop-
erly considered and the numerical results and comparisons for mildly stiff problems
were meticulously presented. The EAS1 code performs much better than the Sham-
pine code. The numerical results showed (sect. 8.2) that the EAS1 scheme is more
accurate and much faster than the Adams formulae in their Shampine and Gordon code
implementation. This is not surprising since the EAS1 scheme possesses much larger
absolute stability regions than the Adams formulae. In mildly stiff problems, where
stability is vital, the EAS1 code performed 3–4 times faster and also more accurately.

Despite the much better performance of EAS1 scheme on mildly stiff problems,
we need to keep in mind though that the EAS1 code used in this work is in need of
much further development, whereas the Shampine and Gordon code has been repro-
grammed and optimised for many years. The major point here is the existence of the
EAS1 methods, which could represent a first-class research alternative. We hope that
this work may encourage some further research on the EAS schemes and similar type
of methods.
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